Social Visual Page

Detecting Stress Based on Social Interactions in Social Networks in Java

Detecting Stress Based on Social Interactions in Social Networks in Java To get this project in ONLINE or through TRAINING Sessions, Contact: JP INFOTECH, Old No.31, New No.86, 1st Floor, 1st Avenue, Ashok Pillar, Chennai -83.Landmark: Next to Kotak Mahendra Bank. Pondicherry Office: JP INFOTECH, #37, Kamaraj Salai,Thattanchavady, Puducherry -9.Landmark: Next to VVP Nagar Arch. Mobile: (0) 9952649690, Email:, web: Psychological stress is threatening peoples health. It is non-trivial to detect stress timely for proactive care. With the popularity of social media, people are used to sharing their daily activities and interacting with friends on social media platforms, making it feasible to leverage online social network data for stress detection. In this paper, we find that users stress state is closely related to that of his/her friends in social media, and we employ a large-scale dataset from real-world social platforms to systematically study the correlation of users stress states and social interactions. We first define a set of stress-related textual, visual, and social attributes from various aspects, and then propose a novel hybrid model – a factor graph model combined with Convolutional Neural Network to leverage tweet content and social interaction information for stress detection. Experimental results show that the proposed model can improve the detection performance by 6-9% in F1-score. By further analyzing the social interaction data, we also discover several intriguing phenomena, i.e. the number of social structures of sparse connections (i.e. with no delta connections) of stressed users is around 14% higher than that of non-stressed users, indicating that the social structure of stressed users friends tend to be less connected and less complicated than that of non-stressed users.

Leave a Reply

Your email address will not be published. Required fields are marked *